

Assistant Lecturer

University.of Basra - College of Dentistry - Department of Basic Sciences
MSc. Medicinal Biochemistry from Malaysian National University (UKM) - Malaysia
Email:- hazim.saad@uobasrah.edu.iq and hazzmrn@yahoecom

Preparation of difierent types ois solutions

Experiment(6)

Standardivation of sodium hydroxide

 NaOH solution with standard solution of
hydrochloricacidHCI

Important requirements for primary standard

-Extremely pure
-Highly stable

- Anhydrous
- Can be weighed easily
- Should be ready to use and available
- Should be preferably non toxic
- Should not be expensive

Objectives

- Standardize a sodium hydroxide solution
-Determine the Molarity or Normality of an unknown
hydrochloric acid solution
- Understand the use of indicators in titrations
- Learn proper pipetting technique
-Learn to titrate a strong acid with a strong base.

Preparation of standard solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}(0.1 \mathrm{~N})$:

1- Weigh out accurately 1.325 gm of $\mathrm{Na}_{2} \mathrm{CO}_{3}$.
2- Dissolve in small quantity of distilled water and transfer quantitatively to 250 ml measuring flask.

3- Complete to the mark and shake well.
4- Calculate the exact normality of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution.

Weight required $=$ Normality x eq.wt. x volume in (1000 ml (liter)).
(I) Determination of the normality of hydrochloric acid by a standard solution of sodium carbonate (0.1 N).

Sodium carbonate reacts with hydrochloric acid according to the following equation:

$$
\mathrm{Na}_{2} \mathrm{CO}_{3}+2 \mathrm{HCl}=2 \mathrm{NaCl}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

When one equivalent of HCl is added to the carbonate it is transformed into bicarbonates.

$$
\mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{HCl}=\mathrm{NaHCO}_{3}+\mathrm{NaCl} \text { ph.ph. }
$$

$\mathrm{pH}=11.5$ (alkaline) to 8.3.

HCl is added to the solution of bicarbonate

$\mathrm{NaHCO}_{3}+\mathrm{HCl}=\mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$

 $\mathrm{pH}=8.3$ to 3.8Calculations:

- In case of M.O.

$$
\begin{gathered}
\mathrm{N}_{1} \mathrm{~V}_{1}(\mathrm{HCl})=\mathrm{N}_{2} \mathrm{~V}_{2}\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right) \\
O \mathrm{Or} \\
\mathrm{~N}_{1}=\mathrm{N}_{2} \mathrm{~V}_{2} / \mathrm{V}_{1}
\end{gathered}
$$

-In case of ph.ph .

$$
N_{1} 2 V_{1}=N_{2} V_{2}
$$

Or

$$
N_{1}=N_{2} V_{2} / 2 V_{1}
$$

(II) Determination of the strength and normality of sodium hydroxide solution by a standard solution of hydrochloric acid

HCl reacts with sodium hydroxide according to the following equation:

$$
\mathrm{HCl}+\mathrm{NaOH}=\mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}
$$

Calculations:
In both cases of M.O. and ph.ph.

$$
\mathrm{N}=\frac{\text { Weight }}{\text { eq.wt }} * \frac{1000}{\text { Volume }(\mathrm{mL})}
$$

use the relation:

$$
\mathbf{N}_{1} \mathbf{V}_{1}(\mathbf{H C l})=\mathbf{N}_{2} \mathbf{V}_{2}(\mathrm{NaOH})
$$

In order to deduce the normality of $\mathbf{N a O H}$

